776 research outputs found

    Why so variable: can genetic variance in flowering thresholds be maintained by fluctuating selection?

    Get PDF
    We use integral projection models (IPMs) and individual-based simulations to study the evolution of genetic variance in two monocarpic plant systems. Previous approaches combining IPMs with an adaptive dynamics–style invasion analysis predicted that genetic variability in the size threshold for flowering will not be maintained, which conflicts with empirical evidence. We ask whether this discrepancy can be resolved by making more realistic assumptions about the underlying genetic architecture, assuming a multilocus quantitative trait in an outcrossing diploid species. To do this, we embed the infinitesimal model of quantitative genetics into an IPM for a size-structured cosexual plant species. The resulting IPM describes the joint dynamics of individual size and breeding value of the evolving trait. We apply this general framework to the monocarpic perennials Oenothera glazioviana and Carlina vulgaris. The evolution of heritable variation in threshold size is explored in both individual-based models (IBMs) and IPMs, using a mutation rate modifier approach. In the Oenothera model, where the environment is constant, there is selection against producing genetically variable offspring. In the Carlina model, where the environment varies between years, genetically variable offspring provide a selective advantage, allowing the maintenance of genetic variability. The contrasting predictions of adaptive dynamics and quantitative genetics models for the same system suggest that fluctuating selection may be more effective at maintaining genetic variation than previously thought

    The demographic consequences of growing older and bigger in oyster populations

    Get PDF
    Structured population models, particularly size-or age-structured, have a long history of informing conservation and natural resource management. While size is often easier to measure than age and is the focus of many management strategies, age-structure can have important effects on population dynamics that are not captured in size-only models. However, relatively few studies have included the simultaneous effects of both age-and size-structure. To better understand how population structure, particularly that of age and size, impacts restoration and management decisions, we developed and compared a size-structured integral projection model (IPM) and an age-and size-structured IPM, using a population of Crassostrea gigas oysters in the northeastern Pacific Ocean. We analyzed sensitivity of model results across values of local retention that give populations decreasing in size to populations increasing in size. We found that age-and size-structured models yielded the best fit to the demographic data and provided more reliable results about long-term demography. Elasticity analysis showed that population growth rate was most sensitive to changes in the survival of both large (\u3e175 mm shell length) and small (length) oysters, indicating that a maximum size limit, in addition to a minimum size limit, could be an effective strategy for maintaining a sustainable population. In contrast, the purely size-structured model did not detect the importance of large individuals. Finally, patterns in stable age and stable size distributions differed between populations decreasing in size due to limited local retention and populations increasing in size due to high local retention. These patterns can be used to determine population status and restoration success. The methodology described here provides general insight into the necessity of including both age-and size-structure into modeling frameworks when using population models to inform restoration and management decisions

    Noise and Nonlinearity in Measles Epidemics: Combining Mechanistic and Statistical Approaches to Population Modeling

    Get PDF
    We present and evaluate an approach to analyzing population dynamics data using semimechanistic models. These models incorporate reliable information on population structure and underlying dynamic mechanisms but use nonparametric surface-fitting methods to avoid unsupported assumptions about the precise form of rate equations. Using historical data on measles epidemics as a case study, we show how this approach can lead to better forecasts, better characterizations of the dynamics, and better understanding of the factors causing complex population dynamics relative to either mechanistic models or purely descriptive statistical time-series models. The semimechanistic models are found to have better forecasting accuracy than either of the model types used in previous analyses when tested on data not used to fit the models. The dynamics are characterized as being both nonlinear and noisy, and the global dynamics are clustered very tightly near the border of stability (dominant Lyapunov exponent λ < 0). However, locally in state space the dynamics oscillate between strong short-term stability and strong short-term chaos (i.e., between negative and positive local Lyapunov exponents). There is statistically significant evidence for short-term chaos in all data sets examined. Thus the nonlinearity in these systems is characterized by the variance over state space in local measures of chaos versus stability rather than a single summary measure of the overall dynamics as either chaotic or nonchaotic

    Mathematical Biology at an Undergraduate Liberal Arts College

    Get PDF
    Since 2002 we have offered an undergraduate major in Mathematical Biology at Harvey Mudd College. The major was developed and is administered jointly by the mathematics and biology faculty. In this paper we describe the major, courses, and faculty and student research and discuss some of the challenges and opportunities we have experienced

    Effects of rapid prey evolution on predator-prey cycles

    Full text link
    We study the qualitative properties of population cycles in a predator-prey system where genetic variability allows contemporary rapid evolution of the prey. Previous numerical studies have found that prey evolution in response to changing predation risk can have major quantitative and qualitative effects on predator-prey cycles, including: (i) large increases in cycle period, (ii) changes in phase relations (so that predator and prey are cycling exactly out of phase, rather than the classical quarter-period phase lag), and (iii) "cryptic" cycles in which total prey density remains nearly constant while predator density and prey traits cycle. Here we focus on a chemostat model motivated by our experimental system [Fussmann et al. 2000,Yoshida et al. 2003] with algae (prey) and rotifers (predators), in which the prey exhibit rapid evolution in their level of defense against predation. We show that the effects of rapid prey evolution are robust and general, and furthermore that they occur in a specific but biologically relevant region of parameter space: when traits that greatly reduce predation risk are relatively cheap (in terms of reductions in other fitness components), when there is coexistence between the two prey types and the predator, and when the interaction between predators and undefended prey alone would produce cycles. Because defense has been shown to be inexpensive, even cost-free, in a number of systems [Andersson and Levin 1999, Gagneux et al. 2006,Yoshida et al. 2004], our discoveries may well be reproduced in other model systems, and in nature. Finally, some of our key results are extended to a general model in which functional forms for the predation rate and prey birth rate are not specified.Comment: 35 pages, 8 figure

    Integrating evolution into ecological modelling: accommodating phenotypic changes in agent based models.

    Get PDF
    PMCID: PMC3733718This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Evolutionary change is a characteristic of living organisms and forms one of the ways in which species adapt to changed conditions. However, most ecological models do not incorporate this ubiquitous phenomenon. We have developed a model that takes a 'phenotypic gambit' approach and focuses on changes in the frequency of phenotypes (which differ in timing of breeding and fecundity) within a population, using, as an example, seasonal breeding. Fitness per phenotype calculated as the individual's contribution to population growth on an annual basis coincide with the population dynamics per phenotype. Simplified model variants were explored to examine whether the complexity included in the model is justified. Outputs from the spatially implicit model underestimated the number of individuals across all phenotypes. When no phenotype transitions are included (i.e. offspring always inherit their parent's phenotype) numbers of all individuals are always underestimated. We conclude that by using a phenotypic gambit approach evolutionary dynamics can be incorporated into individual based models, and that all that is required is an understanding of the probability of offspring inheriting the parental phenotype

    Natural variation in immune responses to neonatal mycobacterium bovis bacillus calmette-guerin (BCG) vaccination in a cohort of Gambian infants

    Get PDF
    Background There is a need for new vaccines for tuberculosis (TB) that protect against adult pulmonary disease in regions where BCG is not effective. However, BCG could remain integral to TB control programmes because neonatal BCG protects against disseminated forms of childhood TB and many new vaccines rely on BCG to prime immunity or are recombinant strains of BCG. Interferon-gamma (IFN-) is required for immunity to mycobacteria and used as a marker of immunity when new vaccines are tested. Although BCG is widely given to neonates IFN- responses to BCG in this age group are poorly described. Characterisation of IFN- responses to BCG is required for interpretation of vaccine immunogenicity study data where BCG is part of the vaccination strategy. Methodology/Principal Findings 236 healthy Gambian babies were vaccinated with M. bovis BCG at birth. IFN-, interleukin (IL)-5 and IL-13 responses to purified protein derivative (PPD), killed Mycobacterium tuberculosis (KMTB), M. tuberculosis short term culture filtrate (STCF) and M. bovis BCG antigen 85 complex (Ag85) were measured in a whole blood assay two months after vaccination. Cytokine responses varied up to 10 log-fold within this population. The majority of infants (89-98% depending on the antigen) made IFN- responses and there was significant correlation between IFN- responses to the different mycobacterial antigens (Spearman’s coefficient ranged from 0.340 to 0.675, p=10-6-10-22). IL-13 and IL-5 responses were generally low and there were more non-responders (33-75%) for these cytokines. Nonetheless, significant correlations were observed for IL-13 and IL-5 responses to different mycobacterial antigens Conclusions/Significance Cytokine responses to mycobacterial antigens in BCG-vaccinated infants are heterogeneous and there is significant inter-individual variation. Further studies in large populations of infants are required to identify the factors that determine variation in IFN- responses

    Venezuela, April 2002: Coup or Popular Rebellion? The Myth of a United Venezuela

    Get PDF
    This article assesses the merits of opposing National Assembly reports into the coup against President Chavez of Venezuela in April 2002. Looking at the historical context and the content of the reports, it argues that the two opposing accounts reflect a class division that has always existed in Venezuela but has been officially denied. It concludes that a possible exit from the stalemate could be that the opposition accept the reality of this class division and therefore the Chavez government as a legitimate representative of the popular classes. This, however, is unlikely in the present circumstances

    Treatment outcomes of new tuberculosis patients hospitalized in Kampala, Uganda: a prospective cohort study.

    Get PDF
    BACKGROUND: In most resource limited settings, new tuberculosis (TB) patients are usually treated as outpatients. We sought to investigate the reasons for hospitalisation and the predictors of poor treatment outcomes and mortality in a cohort of hospitalized new TB patients in Kampala, Uganda. METHODS AND FINDINGS: Ninety-six new TB patients hospitalised between 2003 and 2006 were enrolled and followed for two years. Thirty two were HIV-uninfected and 64 were HIV-infected. Among the HIV-uninfected, the commonest reasons for hospitalization were low Karnofsky score (47%) and need for diagnostic evaluation (25%). HIV-infected patients were commonly hospitalized due to low Karnofsky score (72%), concurrent illness (16%) and diagnostic evaluation (14%). Eleven HIV uninfected patients died (mortality rate 19.7 per 100 person-years) while 41 deaths occurred among the HIV-infected patients (mortality rate 46.9 per 100 person years). In all patients an unsuccessful treatment outcome (treatment failure, death during the treatment period or an unknown outcome) was associated with duration of TB symptoms, with the odds of an unsuccessful outcome decreasing with increasing duration. Among HIV-infected patients, an unsuccessful treatment outcome was also associated with male sex (P = 0.004) and age (P = 0.034). Low Karnofsky score (aHR = 8.93, 95% CI 1.88 - 42.40, P = 0.001) was the only factor significantly associated with mortality among the HIV-uninfected. Mortality among the HIV-infected was associated with the composite variable of CD4 and ART use, with patients with baseline CD4 below 200 cells/µL who were not on ART at a greater risk of death than those who were on ART, and low Karnofsky score (aHR = 2.02, 95% CI 1.02 - 4.01, P = 0.045). CONCLUSION: Poor health status is a common cause of hospitalisation for new TB patients. Mortality in this study was very high and associated with advanced HIV Disease and no use of ART

    A mean-field version of the Nicodemi-Prisco SSB model for X-chromosome inactivation

    Full text link
    Nicodemi and Prisco recently proposed a model for X-chromosome inactivation in mammals, explaining this phenomenon in terms of a spontaneous symmetry-breaking mechanism [{\it Phys. Rev. Lett.} 99 (2007), 108104]. Here we provide a mean-field version of their model
    corecore